Reinforced explosive shock tube

Abstract

Low energy explosive shock tubing is provided which consists of a two-ply, inner and outer layer plastic tube having a plurality of lengthwise textile filaments bonded into the interface between the plastic layers. The textile filaments are chosen for their low elongation properties and the resultant shock tube resists stretching especially in warm borehole environments.

Claims

The embodiments of the invention in which an exclusive property or privilege is claimed are defined as follows: 1. A low energy explosive shock tube comprising a bonded, two-ply, inner and outer layer plastic tube, the inner layer having high adhesion properties for a thin layer of powdered energy-producing material distributed on its inner surface and the outer layer having high resistance to mechanical damage and a plurality of lengthwise textile filaments of low elongation properties bonded at the interface of the said inner and outer tube layers. 2. An explosive shock tube as claimed in claim 1 wherein the said inner tube layer consists of a salt-containing polyethylene ionomer. 3. An explosive shock tube as claimed in claim 1 wherein the said outer tube layer plastic is selected from polyethylene, polypropylene, polyvinyl chloride, polyamide and polyurethane. 4. An explosive shock tube as claimed in claim 1 wherein the said textile filaments are selected from viscose rayon, polyamide, polyester and polytetrafluoroethylene. 5. An explosive shock tube as claimed in claim 1 wherein the denier of the said textile filaments is from 500 to 2000. 6. An explosive shock tube as claimed in claim 3 wherein the outer tube layer comprises polyethylene having a density of 0.93 g/cm 3 .
The present invention relates to low energy explosive shock tubing of the NONEL (Reg. TM) type. In particular, the invention relates to an explosive shock tube having improved resistance to stretch and break especially in a hot borehole environment. Explosive shock tubing as disclosed in Canadian Pat. No. 878,056 granted Aug. 10, 1971 is now widely known and used in the blasting art. This shock tubing or detonating fuse consists of small diameter, for example, 5 millimeters outside diameter tubing of a pliable plastic, such as polyvinyl chloride, polyethylene, SURLYN (Reg. TM) or the like having an inner diameter of about 3 millimeters. The inner walls of the tubing has adhered thereto a thin layer of powdered explosive or reactive material, such as PETN (pentaerythritol tetranitrate), HMX (cyclotetramethylenetetranitramine) or powdered metal mixtures with these. When initiated at one end by means of an appropriate device such as a detonating cap, a percussion or impact wave is propagated within and along the tubing to activate a blasting cap attached at the remote end of the tubing. Explosive shock tubing may be employed in most instances as a replacement for conventional detonating cord in non-electric blasting and has the advantage of low noise, safe handling and low cost. A modified type of low energy explosive shock tube, having a sandwich-type construction of two different plastic materials, is disclosed in Canadian Pat. No. 1,149,229 granted July 5, 1983. This type of tubing is designed to withstand mechanical stress. Both the single ply and double ply (sandwich) plastic shock tubing is susceptible to elongation and possible breakage particularly when used in boreholes containing warm or hot explosives, for example, water-gel or slurry compositions. Elongation can also occur in surface blasting operations, quarrying and the like where the tubing is stressed after exposure to the sun's heat particularly in tropical climates. Elongation has the effect of thinning out or dislodging the film of reactive material coated on the inner tube surface which action may lead to the malfunctioning of the shock tube as an energy conveyor. In particular, where a booster charge attached to a length of shock tubing is suspended in borehole filled with a hot (65° C.) explosive mixture, stretching of the tubing inevitably occurs and, occasionally, the tube is stretched to the breaking point. It has now been found that stretching of explosive shock tubing can be eliminated by providing a tube consisting of a sandwich-type construction comprising inner and outer tube layers, the inner layer having high adhesion properties for a thin layer of powdered energy-producing material distributed on its inner surface and the outer layer having high resistance to mechanical damage, and a plurality of lengthwise textile filaments of low elongation properties bonded at the interface of the inner and outer tube layers. The accompanying drawing, in which FIG. 1 is a perspective view of the end portion of a reinforced shock tube; and FIG. 2 is a cross-section of the tube of FIG. 1 will provide a fuller understanding of the invention. With reference to the drawing where like numerals are used for like parts, there is shown a two-ply plastic tube 1 consisting of an inner tube ply 2 and an outer tube ply 3. At the interface between plies 2 and 3 and bonded thereto are lengthwise textile filaments 4. Coated on the inner walls of ply 2 is a powdered energy generating material 5. The plastic comprising inner tube ply 2 is one which has good adhesion properties for the powdered energy generating material 5. SURLYN (Reg. TM), a salt-containing polyethylene ionomer, has been found to be particularly suitable. The plastic of the outer tube ply 3 is chosen for its resistance to mechanical damage and a polyethylene having a density of about 0.93 g/cm 3 is ideally suited for this purpose. Other suitable plastics for the outer tube are polypropylene, polyvinyl chloride, polyamide and polyurethane. The textile filaments 4 are selected from those filaments or cords which show substantially no elongation under longitudinal stress even at temperatures of the order of 65° C. Particularly useful are high tenacity, low elongation filaments made from viscose rayon, polyamide, polyester, polypropylene and polytetrafluoroethylene. The number of textile filaments 4 employed will depend on the fineness or denier of the strand. From the point of view of convenience of manufacture and suitable bonding of filaments 4 to tube plies 2 and 3, filaments having a denier of between about 500 and 2000 are preferred. Typically between about 5 and 10 of such filaments are evenly distributed around and within the tubular sandwich. The reinforced tubing of the invention is conveniently manufactured by an overextrusion process wherein the inner plastic tube ply 2 is extruded in a tube extrusion apparatus and the textile filaments are linearly applied or laid around the outer surface of the extruded tube. The filamented inner tube is then passed through a second extrusion apparatus where an overcoating of a second plastic is applied as tube ply 3. The filaments are, thus, enveloped between and bonded to tube plies 2 and 3. EXAMPLE A series of explosive shock tubes having various constructions were prepared and subjected to tensile strength tests at 22° C. and 65° C. The tests involved subjecting the shock tubes to stretch to the breaking point by the force of applied weight. The results are given in the Table below. TABLE__________________________________________________________________________ Typical Tensile Strength Typical Material Dimensions Tensile Strength Reduction over Usage or Mass (mm) (kg) TemperatureTubing Type Typical Construction per Length (g/m) OD ID 22 C. 65 C. Range 22 C. to 65__________________________________________________________________________ C.Single tube 100% SURLYN (Reg. TM) 4.8 2.9 1.4 7.3 2.7 63%Sandwich tube Inner ply: SURLYN 4.8 10.0 3.2 68%(unreinforced) Outer ply: Poly- 2.7 3.8 1.4 68% ethyleneTextile Rein- Inner ply: SURLYN 4.8 29.0 18.4 37%forced Tube I Textiles: 5 #1100 0.6 3.9 1.4 denier rayon Outer ply: Poly- 2.7 ethyleneTextile Rein- Inner ply: SURLYN 4.8 38.5 29.9 22%forced Tube II Textiles: 10 #1100 1.2 3.9 1.4 denier rayon Outer ply: Poly- 2.7 ethylene__________________________________________________________________________ From the results in the Table, it can be seen that the fibre reinforced tubing showed a substantial improvement in tensile strength over the non-reinforced tubing.

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (7)

    Publication numberPublication dateAssigneeTitle
    CA-562263-AAugust 26, 1958I. Phemister Harry, American Cyanamid CompanyMultiple unit oil and gas well explosive cartridge
    US-2969101-AJanuary 24, 1961Chase Bag CompanyExplosive bag
    US-3908549-ASeptember 30, 1975Ici LtdExplosive fuse-cord
    US-4205611-AJune 03, 1980Atlas Powder CompanyPlastic laminate explosive emulsion package
    US-4232606-ANovember 11, 1980E. I. Du Pont De Nemours And CompanyExplosive connecting cord
    US-4328753-AMay 11, 1982Nitro Nobel AbLow-energy fuse consisting of a plastic tube the inner surface of which is coated with explosive in powder form
    US-4369711-AJanuary 25, 1983Harold LeaderBag for explosives with lower reinforcing sleeves

NO-Patent Citations (0)

    Title

Cited By (41)

    Publication numberPublication dateAssigneeTitle
    DE-102006007483-A1October 18, 2007Atc EstablishmentIgnition tube useful in subterranean mine or in deep mineral oil bore, comprises a multi layered tube with internal- and external polymer layers and with intermediate layer with tear-resistant reinforcement threads
    DE-102006007483-B4February 11, 2010Atc EstablishmentZündschlauch
    EP-0327219-A2August 09, 1989Imperial Chemical Industries PlcCordeau détonant à basse énergie et procédé de fabrication
    EP-0327219-A3October 25, 1989Imperial Chemical Industries PlcLow energy fuse and method of manufacture
    ES-2584922-A1September 30, 2016José Miguel FAUBEL BARRACHINAMecha para artefacto pirotécnico
    GB-2190458-ANovember 18, 1987Atlas Powder CoFuse tube with reinforcing element
    GB-2190458-BJuly 04, 1990Atlas Powder CoFuse tube with reinforcing element
    RU-2544653-C2March 20, 2015Александр Иванович ГолодяевDetonating tube
    RU-2597924-C2September 20, 2016Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом", Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики" - ФГУП "РФЯЦ-ВНИИЭФ"Детонирующий шнур
    US-2007101889-A1May 10, 2007James Bayliss, Gladden Ernest L, Twarog Jr Joseph WTubular signal transmission device and method of manufacture
    US-2007272107-A1November 29, 2007Twarog Joseph W Jr, Campbell John C Jr, Plitt Tyson J, Ho Kim CEnergetic Linear Timing Element
    US-2008028970-A1February 07, 2008Walsh Brendan M, Franklin P CaryDetonating Cord With Protective Jacket
    US-4607573-AAugust 26, 1986Ensign-Bickford Industries, Inc.Laminated fuse and manufacturing process therefor
    US-4660474-AApril 28, 1987Britanite Industrias Quimicas Ltda.Percussion or impact wave conductor unit
    US-4671178-AJune 09, 1987Aeci LimitedLow energy fuses
    US-4699059-AOctober 13, 1987Cxa Ltd.Explosive shock tube having lateral initiation properties
    US-4817673-AApril 04, 1989Atlas Powder CompanyFuse tube with reinforcing element
    US-4838165-AJune 13, 1989The Ensign-Bickford CompanyImpeded velocity signal transmission line
    US-4991511-AFebruary 12, 1991Haley & Weller LimitedNon-disruptive detonating cord
    US-5010821-AApril 30, 1991Lockheed Missiles & Space Company, Inc.Dual purpose energy transfer cord
    US-5212341-AMay 18, 1993Osborne Alfred M, Harder Patrick JCo-extruded shock tube
    US-5243913-ASeptember 14, 1993Imperial Chemical Industries PlcShock tube initiator
    US-5317974-AJune 07, 1994Imperial Chemical Industries PlcLow energy fuse and method and manufacture
    US-5497829-AMarch 12, 1996Foam Concepts, Inc.Expansion foam borehole plug and method
    US-5509355-AApril 23, 1996Imperial Chemical Industries PlcLow energy fuse and method of manufacture
    US-5625162-AApril 29, 1997Ici Australia Operations Pty LtdSignal tube of improved oil resistance
    US-5629493-AMay 13, 1997Nitro Nobel AbLow energy fuse having improved properties in both axial and radial directions
    US-5803172-ASeptember 08, 1998Foam Concepts, Inc.Mine shaft and adit closure apparatus and method
    US-5837924-ANovember 17, 1998The Ensign-Bickford CompanySignal transmission tube using reclaim material and method of manufacture
    US-5844322-ADecember 01, 1998Nitro Nobel AbLow energy fuse and method for its manufacture
    US-6006671-ADecember 28, 1999Yunan; Malak EliasHybrid shock tube/LEDC system for initiating explosives
    US-6170398-B1January 09, 2001The Ensign-Bickford CompanySignal transmission fuse
    US-6170399-B1January 09, 2001Cordant Technologies Inc.Flares having igniters formed from extrudable igniter compositions
    US-6224099-B1May 01, 2001Cordant Technologies Inc.Supplemental-restraint-system gas generating device with water-soluble polymeric binder
    US-6347566-B1February 19, 2002The Ensign-Bickford CompanyMethod of making a signal transmission fuse
    US-7921776-B2April 12, 2011Ensign-Bickford Aerospace & Defense CompanyDetonating cord with protective jacket
    US-8061273-B2November 22, 2011Dyno Nobel Inc.Tubular signal transmission device and method of manufacture
    US-8327766-B2December 11, 2012Dyno Nobel Inc.Energetic linear timing element
    US-RE37689-EMay 07, 2002Orica Explosives Technology Pty. Ltd.Low energy fuse and method of manufacture
    WO-8808414-A1November 03, 1988The Ensign-Bickford CompanyImpeded velocity signal transmission line
    WO-9910300-A2March 04, 1999The Ensign-Bickford CompanySignal transmission fuse and method of making the same